Mar 15 2007 (Vol. 27, No. 6)
Pressure is an important process parameter that must be monitored in many bioprocess unit operations such as filtration, chromatography, and bioreactor production. In a multistage filtration process, such as a cell removal/clarification process from a bioreactor, pressure readings are used to measure performance of the individual filtration stages. In a tangential flow filtration process, monitoring and controlling the transmembrane pressure and the delta-pressure of the filter is necessary. In bioreactor processes, the vessel pressure needs to be controlled. Traditionally, pressure gauges and stainless steel pressure transmitters have been used for pressure monitoring. In the spirit of the PAT initiative, electronic monitoring, recording, and trending of pressure is preferred to using pressure gauges. Even for process development, automated data collection has advantages over the use of pressure gauges for characterization of a process and record storage. |
Figure
2a |
Using these readily available medical sensors for larger-scale processes where disposable technology is increasingly being used is not optimal because of the narrow flow path and luer fitting. For larger-scale processes, flow through is not an option, and to use the sensor on a narrow dead-leg on a tee-branch of a wider ID piece of tubing may lead to undesired liquid hold-up and inaccurate pressure readings. Plus the luer fitting may loosen or become dislodged during shipping or handling of a disposable assembly that was already gamma-irradiated. A disposable pressure sensor device optimized for larger-scale processes is now available from PendoTECH (http://www.pendotech.com/). The sensor is embedded at the inner surface of a fitting, similar to a hose barb connector (Figure 2), and is available to accommodate from 3/8 inch to 1-inch tubing. The hose barb inlet/outlet design allows for secure connection to tubing that will not be dislodged during handling by the end-user. The location and small size of the sensor allows for an accurate pressure reading in the fluid path and also an unobstructed flow path (Figure 3). The ability to use 1-inch tubing gives a flow-rate potential of 50 L/min or more. The pressure sensor device may also be used in a situation where a barb connector is being used, such as transitioning from one type of tubing to another. The design features no mold parting-line where the tubing is secured, which can be a source of leaks. The single barb shaft provides space for the hose to relax behind the barb, causing the tie-wrap to work like a drawstring. A tie-wrap placed over the antirotation device (designed by Eldon James) will lock the tubing, preventing it from being freed by a twisting motion. |
Figure
2B |
Figure
3 |
Figure
6 |
Figure
7 |
Jim Furey is general manager at PendoTECH. Web: www.pendotech.com. Phone: (609) 802-1262. E-mail: jim@pendotech.com.